Tortuosity of Aligned Channels in Alumina Membranes Produced by Vacuum-Induced Surface Directional Freezing

نویسندگان

  • Sandra Großberger
  • Tobias Fey
  • Geoffrey Lee
چکیده

Vacuum-induced surface freezing of colloidal alumina was used to produce membranes that have elongated, aligned channels and, hence, are tortuous in the direction perpendicular to ice crystal growth. The effective tortuosity of the membranes was measured by steady-state diffusion of a solute, methylene blue. The resulting diffusion profiles show an initial step-increase in amount of dye reaching the acceptor that is caused by capillarity drawing the donor solution through any non-wetted channels in the membrane. This is followed by a linear steady-state phase whose flux is proportional to dye concentration in the donor and inversely proportional to the colloid's volume fraction of dispersed phase. From the steady-state flux, the effective tortuosity, τ* = (α/τ)-1, was calculated. This is the reciprocal quotient of the reduced available area for diffusion within the membrane, α = A*/A, where A* is the available area and A is the cross-sectional area of the membrane, and the increased mean diffusional path length, i.e., tortuosity = L * / L , where L* is the mean path length and L is the membrane thickness. The values of τ* lie in the range of 2-38 and increase as the volume fraction of dispersed phase is larger. This latter effect indicates that τ* > 1 results, to a larger extent, from the reduced available diffusion area, α, than from the lengthened pathway, τ, in these aligned porous membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vacuum-Induced Surface Freezing to Produce Monoliths of Aligned Porous Alumina

Vacuum-induced surface freezing has been used to produce uni-directional freezing of colloidal aluminum oxide dispersions. It leads to zones of different structure within the resulting sintered monoliths that are highly similar to those known for freeze casting using a cryogen cold source. A more-or-less dense surface layer and a cellular sub-surface region are formed, beneath which is a middle...

متن کامل

An Optimum Routine for Surface Modification of Ceramic Supports to Facilitate Deposition of Defect-Free Overlaying Micro and Meso (Nano) Porous Membrane

In this work, a simple and effective way to modify the support surface is developed and a nanostructure ceramic support to facilitate deposition of a defect-free overlying micro and meso (nano) porous membrane is obtained. To achieve high performance nanocomposite membranes, average pore size of outer surface of support was reduced by dip-coating in submicron and nano α-alumina slurries. In...

متن کامل

Biofouling Behavior on Forward Osmosis Using Vertically Aligned CNT Membrane on Alumina

Nowadays, forward osmosis (FO) with many advantages in water treatment, are so attractive for researchers and investigators that the studies are going to optimize and increase its efficiency. However one of the most controversial operating malfunctions of FO process is fouling that limits the FO global application. In the following research, vertically aligned carbon nanotube (VACNT) on alumina...

متن کامل

Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation

Nature-mimetic hydrophobic membranes with high wetting resistance have been designed for seawater desalination via vacuum membrane distillation (VMD) in this study. This is achieved through molecular engineering of metal–organic framework (MOF)-functionalized alumina surfaces. A two-step synthetic strategy was invented to design the hydrophobic membranes: (1) to intergrow MOF crystals on the al...

متن کامل

Performance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor

During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017